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Abstract: The ZN_] fold multiplicity of solutions found by Boley

& Golub in their study of the inverse problem for N x N symmetric,
pentadiagonal matrices contrasts with the unicity of the solution
of the inverse problem for an inhomogeneous, discrete beam. The

reason for this discrepancy is elucidated and can be traced to the

different properties of the spectral data used in the two cases.
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1. Introduction. Recently, Boley & Golub [1] have examined the problem of re-

constructing an NxN, symmetric, pentadiagonal matrix from its spectral data.

The formulation of this inverse problem follows the line pioneered by Hochstadt
[2] for tridiagonal matrices. Namely, the given spectral data are made up by
the eigenvalues of the original pentadiagonal matrix, as well as the eigenvalues
of two closely related matrices obtained by deleting respectively the first one
and two rows and columns. Whereas the equivalent procedure yielded a unique

| multiplicity

solution for tridiagonal matrices [2], Boley & Golub found a N"
of solutions for the pentadiagonal case.

This result might seem puzzling at first. Indeed, pentadiagonal matrices
can be viewed as finite difference analogues of certain Lth order differential
operators, such as that governing the vibration of a beam. And, in my investi-
gation of the inverse problem for the discrete beam [3], | showed that given
three so-called syhpathetic spectra, the solution of the inverse problem, if
it existed, was unique.

The aim of the present paper is to clarify this apparent contradiction
between Boley & Golub's result and mine. The key to the paradox lies in the
fact that Boley & Golub used three spectra which are not sympathetic, i.e. whiéh
are not equivalent in information to the data contained in the impulse response.

In order to illustrate this important point about the need for the spectral
trio to be interrelated, | shall consider a specific inverse problem for the
vibrating beam with three non-sympathetic spectra. More specifically, the
spectral data will consist of the natural frequencies of vibration of the beam
in the following three configurations: (i) clamped-clamped, (ii) clamped-supported
and (iii) clamped-free. Eminently reasonable though this choice of spectra may be
from the engineering point of view, it has the drawback that these three spectra

are not sympathetic and cannot insure a unique solution. |In fact, for the Nth
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discretized version of this problem, we shall see that there are ZN-l solutions,
thus arriving at a multiplicity of solutions similar to that found by Boley &
Golub.

The outline of the paper is as follows. In §2, we shall derive the basic
equations for a discrete beam: this simple mechanical system will provide valu-
able insights into the inverse problem. §3 contains all the necessary ingredients
for a consideration of the inverse problem. Finally, in §4 we consider the partic-
ular inverse problem for which the spectral data are associated with the natural
frequencies of vibrations in the clamped/clamped, clamped/supported and clamped/
free configurations. We shall show that with such data, the inverse problem has 3

ZN-] fold multiplicity of solutions.
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2. The discrete beam. Consider a beam of length L characterized by a variable

flexural rigidity El and a variable density p. If y(x,t) stands for the dis-
placement of the central line, then the classical equation governing the infini-

tesimal oscillations of this beam is

32

9x

~<

-2_2 El-
ax

-pz—g-,o<x<L. (1)
t

N

» For the sake of definiteness, we shall assume that the left end of the beam is
clamped, i.e.

¥(0,8) = 3= y(0,t) = 0 (2)

Let us now consider the following conceptual experiment: at time t = 0,
we strike impulsively the right end of the beam which is assumed to be stress-
free. We then monitor the ensuing displacement as well as the slope of the
central lire of this right end. To carry out this program mathematically, we
must solve equation (1) subject to (2) and to

y (x,0) ='g—ty(x,o) =0

2 2 (3)
vt =1 ¥yt - F(e) = o,
Bx 9x Bx

in order to deduce the impulse response, viz. y(L,t) and %;y(L,t). This is best

accomplished by working in the frequency domain; to that effect, we define

]

u(x,w) = f e'“t y(x,t) dt. (4)
&

More importantly, in preparation for the discretization, it is convenient
to transform (1) into a system of first order equativ.s. Therefore, let us define
8 (x,w) to be the slope of central line, i.e.

u' =0 (5)

and T (x,w) to be the moment about the central line, i.e.

8 = f(x)r. (6)

A 0. AP e 5 SO S Tt W =




In the above formulas, a prime denotes differentiation with respect to x and
f(x) = 1/E1 is a measure of the '"limpness'' at x. To complete our transformation
to a first order system of equations, we introduce ¢(x,w) which represents the
force applied to the central line. Consequently,
T = ¢ (7)
With these new variables, Newton's law reads
¢' - -mzpu. (8)
The boundary conditions (2)-(3) can now be written thus:
u(e) = 6(0) = 0, (9)
T(L) = ¢(L)-F = 0. (10)
We shall be concerned with the discrete version of the system (5)-(8)
subject to conditions (9)-(10). The simplest and most physically meaningful
way to discretize this problem consists in restricting p(x) and f(x) to be sums
of delta functions, viz.
N
p(x) =} m, §(x=x;)
i=1 an

N
f(x) =.2] f. 6(x-x')

'-
where

o-xo< xl<...<xN-L. (12)

Physically, this means that the beam is made up of segments of lengths
o it Bt (13)

of zero weight and ''limpness'', i.e. of zero weight and infinite stiffness. These

segments are connected by joints of mass m, and concentrated |impness fi located

at x = X;. For instance, we can think of these joins as clothespin-like devices.

We can see from (6) and (8) that in the interval (xi-l' xi), both 6 and ¢

are constants, i.e,

b e —— e — - — - .- - ——
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8 (x,w) = 8.y

for xs(xi_], xi) (14)
¢(x,w) = ¢i‘l

Substituting these expressions in (5) and (7) we deduce that
ulx,w) = u,_y + (x=x;_;) 8,
(x,w) = 1., = (x=x. .) ¢, for xe(xi_‘, xi) (15)

i-1 i-1 i-1

We get the discrete equations by examining the jump conditions at X As can be

seen from (5)-(8), these conditions are:
[ul; =0
(6], = f, t(x;,w)

[1; = 0

(16)

lo], = -wzmi u(xi.w)
where [u]i stands for u(xi+0,w) - u(xi-O,w), etc.
Replacing (14)-(15) into (16) yields

Uy =g * Ry

. -1 + f,.T
i i i " (17)

LR ™ Bl

o; = b5y - wPmu,
Since u and T are continuous, it is clear that
u, = u(xi,w) s
T, = Tix;,0),
whereas by the very definition in (14)
8, = 6(x;+0,w0),
$; = ¢(x,+0,u).
To complete the formulation of the discrete direct problem, we shall impose the

following boundary conditions:

u“p" 60 =0, (18)

t = O-F = 0. (19)




Before proceeding with the computation of the impulse response, viz. uy and SN,

it is perhaps worth writing (17) as a single forth order difference equation,

namely
] ! 1 I I
T + + 7 + } u +1
Tl 2 Fabihig  Fraft Bi4° R84
o 2 1 R
B e % + + T+ 25 U
fa®® B4 TP Bihie” Rt
] ] ] 1 }
=+ 7 <k 2 + u._
Pt Fifia L fofogitay U1
+ 7 ; N U:p = wln . . (18)
p=1p=2"1=1 ! e
Now, if we introduce the field
B
v, =m " u, (19)
then (18) can be written as i
2
Crez Y-z * Prtviay T 0 T N T SN TV Y (20)
where
ai = % 1 > + 1 : + 2 + 1 . + 1 - ) (Zla)
'Rt T Fiiaiy Y e Pratbier |
-l 7
b, = ( . P 3 1 -+ 1 4 1 : (21b)
M Ftifia Fad "™ "™ |
1 |
iy ; (21¢)
|
(MM [fmzizm]

Thus, the inverse problem for a discrete beam corresponds to an inverse problem
for a symmetric pentadiagonal matrix in which the elements of the first off-

diagonals are negative, all other elements being positive.

T ——- 5 e A A Y ——_ ... s - - ——




One final remark regarding the discretization. No particular significance
should be attached to the choice of the clamped boundary conditions (18). How-
ever, having made that choice, it is easy to see from (17) that

u, = 0, (22)
i.e. the first joint does not move! As a result, the mass m, does not enter
into the problem. In fact, for this clamped/free case, the eigenvalue problem

for the pentadiagonal matrix looks as follows:

ey i 5 .
Wy By e TG vy vy
b2 a b3 c3 ¢ o o o . v3 v3
i s few | (23)
* ot f : :
a-1  Bn-1]] VN-1 VN1
£ £
| -1 3N [ W N

f
ag ] 1 R 4 I + I
Mt | Fr-1fn-12 Fae®neafner Paerfne2? Fa-2fn-22

b;‘] i = 2 ! 4 ] ’
(Mg md ™ | =12 -2t

f.
ay

]
—_
N N-14N-12

We shall not pursue the problem via the pentadiagonal matrix since this tends

to shroud the physics.

3. The wedge product. The direct problem consists in finding uy and GN given
the beam characteristics {2i}g " {mi}g, {fi}?. The solution to this problem is

straightforward. We introduce two linearly independent fundamental solutions




of the difference equations (17).

we define [u(,), 9!1), Tfl), ¢§])] and [u§2), 952),

({) (2)

succintly u,

~1

and u in such a way that

Eé')a[o R TR B

3éz)= o o o 17

where T stands for transpose.

Then
u, = aufl)

~ | ~

(2)

+ bl,li .

Using a superscript to label these solutions,

L)

i ¢§2)] or more

(24)

(25)

In order to evaluate the constants a and b, we make use of the boundary conditions

(19) at Xy namely
FTél) Téz)

¢£1) 0 (2)

L S8 ey

(26)

Omitting the trivial intermediary calculations we find that the constituents of

the impulse response can be expressed thus:

i {uN, TN}
N {TN, ¢N}

and

{eN, TN}

el o
{"N? "N}

(27a)

(27b)

where from now on we shall use a bracket as a shorthand notation tor determinants

of certain 2 x 2 matrices, namely
{a, b} = a“) b(z) - a(z) b(])

(28)

T S S P e -




Bracket expressions will be formed for each point X;, e.g.

These bracket expressions are related to the so-called wedge product of ugl)
and ufz). Given the 4 x 2 matrix

U, = [ufl) ufz)] =

~ | ~1 ~ |
the wedge product

1= ol 4l =

is a vector with components Za,i (=1, 2, ..., 6) equal to the determinants
of the matrices obtained from gi by deleting two rows. |If the label a is
attached to the chosen rows in a lexicographic manner, then it is clear that

Z, . = {ui, ei}

Z, . = {u, 1;}

Z3,i = {”i’ ¢i}
2 ;= {6,, 1,1} (30)
Zg,; = 18 ¢}
Ze,1 = (T &)
(1)

Rather than working with u;

and gfz) whose components are polynomials

in m2 and then forming the bracket expressions, a risky numerical procedure

in view of the cancellations, it is preferable to work with the brackets ab initio.
Our next task then is to derive equations for Zl,i’ 3w vy Z6,i' Using

the difference equations (17), it is a simple matter to deduce that

- S + f.2 s (31a)

2

" Brer®s,iet T Mettu e T Men 25,01 (31b)

7 - e (s ——



- ]0 -
3.1 " %301 * Hifs i 0
25,0 = B5t-1 = Fiett5, 000
7. . @ :

TN el T

. 2
2,1 ™ Bg, -y T EE, e

za,o = 6&6 &= 2. oy B

(31¢)

(31d)

(31e)

(31f)

(32)

The above equations can be simplified slightly. Indeed, from (31c) and

(31d), we see that
25,0 F o1 ™ B350 T B
which, in view of (32), implies that
e i

We can therefore eliminate Z, . and rewrite equations (31) as

3,i

ER 7 ’

Ly, 1= ¢ ic2,i

Tt=l

2
f=) " “Epay *

+

Zaov ™ 7 =0

271 T ity 1ag

z i
Byj=) = *=1%5, je1 ,

+

2
B BN Ry R R L

2
SR 1e) T Wilyas

(33)

(34a)

(34b)

(34¢)

(34d)

(3ke)

These are the equations which are best suited for solving the inverse problem.

It is important to realize that the components of Za ; are not independent.

’

Indeed, in addition to the linear identity (33), these components satisfy the

following quadratic identity:
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2 i
LWL R W L Rl (35)

This ideﬁtity can be derived from the equations (34). However, such a derivation
hides the fact that this identity is algebraic in nature. It has a long history
which goes back to work done in the eighteenth century on ''vanishing aggregates
of determinants' (see e.g. [4], bottom of p. 50). This quadratic identity will
play a crucial role in whether or not the inverse problem has a unique solution.
We close this paragraph by returning to the determination of the impulse
response. In view of (27), this is tantamount to the determination of
ZZ’N(mz), Zh’N(wZ) and Z6’N(m2). Starting with the conditions (32), we can

find these quantities, as well as Z, N(wz) and Z (wz), by solving the difference

5,N
equations (34). For N>2, these quantities are polynomials in w2 of the following

form
2 =2, (0 TTN-Z G w? ) (36a)
1,N 1,N E:Z :
n=1
5 N-2 o2
Zz,N(‘*’ ) = zz’N(o) ’ l a - = ) Rk (36b)
n=| A
2. oy = O 2
AR S H (1 = 2 ) (36c)
’ ’ 2 ’
n=| un
5 N-1 o2
Zg W) = 25\ (0) T .= ;7) , (36d)
n=| i
2 —#:l w2
Z6,N(‘" ) = Z6,N(0) | (- E—z-) . (36e)
n=1 .

The zeros of these polynomials are the squares of the eigenfrequencies
of the discrete beam in various vibrating configurations. These vibrating con-

figurations are such that the left end is always clamped, whereas the conditions

T A AP —ply —— e — - v -y —
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at the right end differ. For instance {KH}T-Z, {An}T-z and {En}T-] correspond

respectively to the cases in which the right end is clamped, supported and
stress free. The constants Zl N(O), e Z6 N(0) appearing in (36) are
easily deduced by setting wz = 0 in (34) and solving the resulting difference

equations. This calculation shows that

N i-1
Z, @ = = -] £ T (e fp 0022) (372)
=2 =]
el 2
zZ’N(o) = =p.= -ig‘ (xy=x;)" f; ) (N22) (37b)
N-1
z,"N(o) = -P3 -izl (xg=x;) f.,  (N22) (37¢)
zs’N(o) =1, (37e)

4, The inverse problem. As previously mentioned, in view of our particular

choice of boundary conditions at the left end, m, does not enter into the
problem. Therefore, the solution of the inverse problem consists in recovering
the 3N-1 beam characteristics {mi}g 3 {fi}T " {li}g-]

In order to arrive at a unique solution, we must use impulse response
data together with two additional constraints [3]. We have seen that the
impulse response data are equivalent to the three sympathetic spectra
{Xn}T-Z - {un}T-z ) {En}T-l and the two sums

N-=1

*
P, = i£I (xy=%;) f. (38)

N=1

92-2

h (g% ) 2F, (39)
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To these 3N-3 pieces of information, we add another sum, say

Po ™ AR - (40)

and a normalization

X, = .z L.=L . (41)

0f course, we could translate these requirements into analogous ones for
pentadiagonal matrices of the type (23). But, without the underlying connection
with the beam, these conditions would not be very meaningful.

We shall not review the procedure necessary for solving the inverse
problem. Suffice it to say that this procedure consists of two steps [3].
The first step is the evaluation of the missing polynomials Z"N(wz) and
ZE,N(wz) via the quadratic identity (35). These polynomials can be determined
uniquely provided that the given data are associated with the impulse response.

Indeed, substituting

z,  (w?) = Niz g W (42)
1,N g
and
N=-1
2 2K
ZS,N(w ) = Pg * rzl P (43)

into the quadratic identity and equating the coefficients of various powers
of wz equal to zero we can derive a set of 2N-2 linear equations for the un-

N-1 N-2 ; ) 2 2
knowns {pK}] and {qK}o . Having determined ZI,N(w ) and I. N(w ) and

-y

thus knowing all the components of Za N(wz) we can proceed with the second
’
[ (wz) from (34) by

step. This consists in finding m and Z

£
N’ "N’ ON-1

means of suitable operations with polynomials such as divisions and additions.

oy N=1

Once again, the results of these operations are unique. By repeating the
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same operations for the successive intervals the unique solution to inverse
problem is obtained.

The above mentioned procedure breaks down if the given spectra are not
sympathetic. In order to illustrate the changes brought about by data which
are not related to the impulse response, let us consider the case in which
Z],N(wz), ZZ,N(wZ) and ZG’N(wZ) are given. Referring to (30) for the defini-

tions of Z and Z6 N it is clear that the zeros of these polynomials
X ‘

1,8 22N

correspond to the natural frequencies of vibrations of the beam in the clamped/
clamped, clamped/supported and clamped/free configurations. Following the

same procedure as before, we first attempt to find Z (wz) and Z, N(wz)
1]

5,N
which we write thus:
e MER iy
z, W) =] s w (L44)
LN K
K=0
Once again, the quadratic identity provides us with 2N-2 equations for the un-

knowns at hand, namely {qK}g-z and {SK}g_z

However, these equations are

no longer linear equations for 9. and Sk but rather linear for 9 and quadratic
for sK! By eliminating the qK's we can deduce N-1 quadratic equations for the
S Appealing to a theorem of Bézout+ (see e.g. [5], p. 10) there are in

general ZN-] solutions to these equations i.e. ZN-]

polynomials Z, N(wz) and
’
Z5 N(wz) compatible with the given data. For each one of these ZN-] pairs, we
’

: " 2
can find corresponding values of my» fN, RN-! and Za,N-l(w ) by means of the
usual polynomial manipulations. Thus, we generate ZN'-I solutions to the inverse
problem.

The second definition of sympathetic spectra [3] is now quite natural.

Such spectra are the zeros of those three polynomials for which the remaining

+Bézout's theorem: N polynomial equations of degrees n < ey Ny
in N variables have in general Ny Ny + « « Ny common solutionl ahen the number

is greater, it is infinite.
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two polynomials can be uniquely determined by the quadratic identity. For

instance, the zeros of Z Guz), z (mz) and 2 (mz) form a trio of sympa-
I,N 4N 2,N

thetic spectra. |In their investigation of the inverse problem for symmetric,

pentadiagonal matrices, Boley & Golub chose their spectral data primarily

for convenience and without regard to whether or not the three spectra were

sympathetic. As a result, the fact that they found a multiplicity of solutions

is no longer surprising.
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